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ABSTRACT 

We show that  certain small sets are removable for hounded mappings 

of finite distortion for which the distortion function satisfies a suitable 

subexponential  integrability condition. We also give an example demon- 

strat ing the sharpness of this condition. 

1. I n t r o d u c t i o n  
1,][ We call a mapping f E Wlo c (~, R ~) a m a p p i n g  o f  f in i te  d i s t o r t i o n  if it 

satisfies 

IDf(:r)l ~_< t i (x)J(x, / )  a.e., 

where N(x)  < co, and if also J(. ,  f )  E L~oc(ft). Here and in the sequel ft C N ~ 

is open, conneeted~ and bounded. The basics of the theory of mappings of finite 

distortion have been established in the papers [1], [2], [3], [4], [5], [10], [11] and 

[12]; also see the monograph [7]. In these works it has been demonstrated that  

(sub)exponential integrability in the sense described below is both sufficient and 

essentially necessary for the validity of many basic properties similar to those 

of mappings of bounded distortion, that  is, mappings of finite distortion with 
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research was done when the authors were visiting at the University of Michigan, 
P.K. as the Fred and Lois Gehring professor. They wish to thank the institute 
for the hospitality. 
Received January 28, 2002 

269 



270 P. KOSKELA AND K. RAJALA Isr. J. Math. 

K E L °°. However, there are still many other properties of mappings of bounded 

distortion, also called quasiregular mappings, for which no analog is known in 

our more general setting; see the monographs [13], [14], [8], [16]. 

The purpose of this note is to study the question of removable singularities 

for bounded mappings of finite distortion. Our principal message is that suffi- 

ciently small sets are indeed removable under the (sub)exponential integrability 

assumption on A" whereas even a single point can fail to be removable under 

weaker integrability assumptions. 

Let us next describe what we mean by (sub)exponential integrability. Let 

(I): [0, oo) -+ [0, oo) be a strictly increasing, differentiable flmction. We call such 

functions Orlicz functions and we make the following two assumptions: 

(+-I) J'~ ¢'~(tt) dt = oo, 

((I)-2) limt-~oo tO'(t) = oo. 
We will prove our removability results under the assumption that exp(O(K)) is 

integrable with • satisfying the above two conditions. Both of them are needed 

but the second could be replaced with some other regularity requirement on q~. 

Notice that (O-1) and the integrability of exp(O(K)) do not even guarantee the 

Ll-integrability of K. The role of (0-2) is to take care of such pathologies; see 

[12]. It is often automatically guaranteed, as for O(t) = At, O(t) = t( log(e+t)) -1, 

and for most of the functions that are close to being linear (or that grow faster). 

Our removability theorem will be given in terms of a capacity associated to 4~. 

In order to introduce this capacity, we first define 

(1.1) ~/,(t) = texp(O(t)). 

Because ~b is strictly increasing, we may define an increasing function h: [0, cxD) -+ 

[0, oo) by setting 

(1.2) h(t) = t~(~/'-l(t2n) ) n-~. 

We say that a compact subset E C ~ has zero h-capacity, caPh(E ) = 0, if 

inf { / h,(,Vu,) : u ~ C~( f t ) ,  u(x) = lVx ~ G for some open G D E }  = O. 

Using the h-capacity, we give the following result. 

THEOREM 1.1: Let • and h be as above, such that the assumptions ((I)-l) and 

(~-2) hold. Let E c ft be a compact set whose h-capacity is zero. I f  f:  gt \ E -+ 

~n is a botmded mapping of finite distortion such that 

a exp (~ (K( , ) ) )  < oo,  
\ E  
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then f extends to a mapping of finite distortion in f~. 

In Section 2 we show tha t  --- under the assumpt ions  (ff~-l) and (0-2) - -  each 

singleton has zero h-capacity.  I t  is then easy to further  construct  Cantor  sets 

whose h-capaci ty  is zero. 

There  are previous results related to Theorem 1.1. When  K C L °°, our claim 

is the counterpar t  of the basic result t ha t  sets of zero conformal  capaci ty  are 

removable  for bounded  quasiregular  mappings .  In tha t  set t ing also much larger 

sets are removable;  see [6], [8]. In our sett ing, improvements  of t ha t  type  on 

Theo rem 1.1 appear  to require tools tha t  are not yet available; see, however, [1] 

for the planar  case which is somewhat  easier. When  ~( t )  = At, the claim of 

Theorem 1.1 has been proven in [2], [3]. Also see [15] for the removabi l i ty  of a 

point  for homeomorphic  mappings  when O(t) = At. 

As pract ical  examples,  assumpt ions  (if)-1) and (0-2) are satisfied for 

t t 
,~(t) = t, 

log(e + t ) '  log(1 + t ) log log(e  e + t) . . . .  

for any str ing of i tera ted logari thms.  The  corresponding capaci ty  functions can 

(up to a mult ipl icat ive constant)  be es t imated  from above as follows: 

if q~(t) = t then h(t) < t ' ( l og ( e  + t)) ~-~, 

t 
if ~ ( t )  - log(e + t) then h(t) <_ t ' ( l og ( e  + t) loglog(e e + t)) ~-a . . . . .  

One could also formulate  Theorem 1.1 in te rms  of Hausdorff  measures  arising 

from general gauge fimctions associated to h, but  we have chosen, for technical 

reasons, to restrict  ourselves to the capaci ty  setting. 

Our  second result demons t ra tes  the necessity of (~5-1) for Theorem 1.1. 

THEOREM 1.2: Let q? be an Orlicz-function such that 

(1.3) f ~  ~'~s) ds < oo. 

Let Q be a closed cube in IR '~, centered at the origin. Then there exists a bounded, 

continuous mapping f: Q \ { 0 }  ~ IR" of finite distortion such that 

Q exp(~(A ' (x ) ) )  < 
\{0t 

but so that f does not extend to a mapping of finite distortion in Q. 

Notice tha t ,  for example,  the following flmctions if) do not satisfy assumpt ion  

((I)-l) when e > 0 and thus satisfy (1.3) (but  do satisfy (~-2)):  

t t t 

• (t) - t~, logl+~( e + t ) '  log(e + t) log l+~log(e ~ + t) . . . . .  
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We will prove Theorem 1.1 by extending the corresponding argument  given 

in [2], [3] for the case O(t) = At to our more general setting in Section 2. This 

part ial ly relies on recent results in [12] but  requires some improvements on the 

prior arguments.  The  construct ion for Theorem 1.2 is based on a modification 

of the constructions given in [10], [12]. This will be explained in Section 3. 

2. P r o o f  o f  T h e o r e m  1.1 

Let  us define two auxiliary Orlicz-functions: 

'~,(t) = texp(~( t ) ) ,  
8 

(2.1) g(s) - ~,_l(s ) 1, s > 0, and g(0) = 0. 

We notice tha t  ,~, is str ict ly increasing so tha t  the inverse function ~/,-1 makes 

sense. We immediately have 

(2.2) g(~/,(t)) = exp(O(t))  - 1. 

We then have the following ([12], lemma 2.1). 

LEMMA 2.1: Assume that • satisfies (0-1).  Then 

s-~-~ = oo and 
(b) given a, b >_ 0 we have 

g(ab) <_ a + exp(~(b))  - 1. 

Recall tha t  the function h was defined as h(t) = tn(~,-l( t2n))  n-1. The  fol- 

lowing lemma shows that  Theorem 1.1 is not empty: singletons have h-capacity 

zero. 

PROPOSITION 2.2: Let h, g2 and ft be as above, such that assumptions (~-1) 

and (0-2) hold. Then 

caPh({x}) = 0 for every x C ft. 

We record the following result from [9] tha t  we employ for the proof  of Propo-  

sition 2.2. 

LEMMA 2.3: I fF:  [0, OO) -+ [0, OO) is decreasing and 

f l  ~ ~l /n ( t )dt -- oc, 
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then there exists a radial function u • WoLn(B(0, 1)) such that u > O, u is 
continuous in B(O, 1) \{0} ,  'u(3:) --+ cx~ as Ixl --+ 0 and 

fB IVul (1-' )/n(lVul) < oo. 
(0,1) 

We are now ready to prove Proposition 2.2. 

Proof.' Without loss of generality, assume that x = 0 and B(0, 1) C gt. Let 

~(t) = ( t ~ - l ( t ~ ) )  -n. Then ~ is decreasing and differentiable in (0, cx~). By 

change of variables, 

(t)dt 

> 

f l  ~ dt f ° ° l ( g ( t 2 n )  1 )  
tf,_l(t2n) -- -[ k t2 n + ~-~ dt 

f l ~  g(t 2n) ~ 9 ( s ) .  
t2n+  1 dt : - -  = oc. 2ns2 as 

Thus, by Lemma 2.3, there exists a radial function u E W 1,n (B (0, 1)), continuous 

in the punctured unit ball, for which u(x) -+ oc as Ixl --+ 0 and 

f h([VuD = f IV ul~(l-'~)/n(lvu[) = m < o~. 
J B  (0,1) JB(0,1) 

We can further assume that the support of ,u is contained in the unit ball. Define 

u~ -- min{~.u, 1}. Since .u C wl 'n (B(0 ,  1)) and grows to infinity as Ixl tends to 

zero, filnctions uk are valid test functions for h-capacity for every positive k. For 

this we also need to know that one can approximate by smooth functions with 

respect to the Orlicz function h. This density property is known to hold when 

the fimction h is doubling, i.e., when h(2t) _< Ch(t) for all t > 0, see [8]. Now 

by assumption (~-2), h is doubling for big t, and by the definition of h doubling 

then holds for all t. 

Using the fact that that ~/,-1 is increasing, we have 

f h(,~7'ukl) = fB(o,1)h(IVukl)= fB(o,1)'V~tk]n(~'-l([VUk[2n))n-1 

= k - n f B  I V u l n ( ~ , - l ( k - 2 n l v u l 2 n ) )  n-1 
(0,1) 

/o k -n  IVuln(~,- l ({V~tt2n))  n-1 ~, h ( IVul )  
(o,1) (o,1) 

= k - a M  ~ 0 

as k -+ o~. | 

We need two more lemmas. The first one is from [12], Proposition 2.6. 
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LEMMA 2.4: Let • and g be as above, such that assumptions ((I)-l) and ((I)-2) 
1,1 hold. If f W,o  and 

g(IDf] < oo, 

then the pointwise Jacobian J(x,  f )  is locally integrable, and J(x,  f )  coincides 

with the distributional Jacobian. 

The la t ter  conclusion of the l emma  says tha t  we can integrate  by par ts  against  

the Jacobian,  tha t  is, 

f CJ(x,f)dx=-/fJ(x,f~ . . . . .  f i - t , ¢ , f i + l  . . . . .  fn)dx  

for each i = 1 , . . . , n  and all ¢ E C~(~I ) .  

LEMMA 2.5: Let h, g and • be as above, such that assumptions (~-1) and (~-2) 

are valid. Then the following holds. 

1. There exists a constant C = C(n, ~) > 0 such that for every a, b > 0 

an- lb  < g(a ~) + h(b) + C. 

2. For every a >_ 0 there exists a constant M = M(a,  n, ~) > 0 such that 

Prool~ 

(i) 

(ii) 
(iii) 

h(a + t) <_ M + Mh( t )  Vt >_ O. 

1. We have three cases: 

a _< b: Then  an-lb  <_ b n <_ h(b), when b is sufficiently large. Thus  we m a y  

choose C so tha t  the claim holds in this case. 
b < a and b < a/~,-l(an): Then  an-lb < an /¢- l (an)  = g(a ~) + 1. 

a / ¢ - l ( a  n) < b < a: Claim: For every e > 0 there exists a constant  

L = L(n,O,e)  > 0 such tha t  a ~ > ~ , - l ( a ' )  for every a >_ L. 

P r o o f  of  the claim: We show tha t  ae/~[~-l(a n) ~ oo as a --+ cx~. Recall 

tha t ,  by (~-2),  tOt(t) --+ oo when t tends to infinity. This  implies tha t ,  

for each s > 0, there is ts > 0 s o t h a t  O(t) _> s l o g t  for t > ts. Because 

¢( t )  = texp(O(t) ) ,  we conclude tha t  ~, exceeds each polynomial  growth rate  

for sufficiently large t. The  claim follows. 

Now, for a large enough, a 1/2 < a / ~ - l ( a  n) < b. Because ~/,-a is increasing, 

we have 

an-lb <_ bn(¢- l (an))  n-1 +C(n,¢~) 

< bn(d,-l(b2n))n-1 + C(n, @) = h(b) + C(n, ~). 
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2. A simple but tedious calculation using the definitions (1.1), (1.2), (2.1) of 

'~,, g, and h gives us the estimate 

h'(t) < (2(n - 1) + r~)tn-l(~/,-l(t2n)) n-1 

for all t > 0, and using the previous claim we obtain the estimate 

h'(t) < t" + C 

for all t where C = C(n, ¢,). Now 

s 
a+t 

h(a + t) - h(t) = h,'(t) < Ca + a(t + a) n 
t 

<Ca + 2'~a n+l + 2~at ~ < M + Mt  ~. | 

Proof of  Theorem 1.I: The idea of the proof is similar to that  of the proof of a 

weaker result given in [3]. By Lemma 2.4 it suffices to prove that  

(2.3) JFg( lDf l  '~) < cc 

for every compact set F C t~. Indeed, it then follows that  f E Wllo'~ (fk R" ), and 

other claims follow by applying Lemma 2.4. To see that  (2.3) implies that  the 

coordinate flmctions f J  a r e  locally integrable, we use the following argument. 

Consider the functions fJ  = min{i, m a x { f J , - i } } .  Then by the definition of 

9, [Vf  j ] E L~oc(D) and thus 9~. j ¢ Wj~o'~(ft). For each x E a ,  consider a ball Bx 

and a constant M for which fB~ IV]Jl <- M for all i c N. Then the Poincar~ 

inequality implies that  the sequence (fJ)i  is bounded in WI'I(Bx).  Recall that  

one can use the average over any subset A of Bx with IAI > [Bzl/2 in the 

Poincar~ inequality, and that  IEI = 0. Monotone convergence now implies that  

the coordinate functions of f are locally integrable in B~, and hence over any 

compact F C ~. Note that. although inequality (2.3) is assumed for the entire f~ 

in Lemma 2.4, it suffices to consider integrals over compact sets, as we only need 

local conclusions of Lemma 2.4. 

Fix a compact set F C ~. Then there exists a test function ~ C C ~  (f~) such 

that  0 _< r/_< 1 and 71 = 1 in F.  Since caph(E ) = 0, there exists a sequence (¢j) 

with properties 

(i) Oj E C ~  (f~) for every j c N, 

(ii) 0 <_ 0j _< 1 for every j C N, 

(iii) for every j E N there exists an open Uj D E such that  Cj = 1 in Uj, 
(iv) l i m j ~  Cj(x) = 0 for ahnost every x E fL and 
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(V) l i m j _ ~  fa  h([VCj]) = 0. 
Define ~ j  : (1 - ¢ j ) f ]  E C ~ ( ~  \ E ) .  We  want to show that 

(2.4) fa g(l~JDfln) <- C < oo. 

This would prove the theorem, since by the choice of ~ and Fatou's lemma. 

IF g(lDf]n) < fn g(l~of]n)= /~ j---~oolim g(lc2jOf] n) 

< liminf f g(l~jDf] n) < C. 

First of all, the function g is, as an Orlicz-function, increasing. Thus we can use 

the finite distortion property of f to obtain the estimate 

(2.5) /~ g(l~jDfl n) <_/~ g(l~j]nJ(x,f)K(x)). 

By Lemma 2.1 (b), 

~ g(,~2j,n J(x. f)A'(x) ) < ~ ,~j,n J(x. f) + ~ exp((I)(A'(x))). 

By our assumptions, the second term on the right hand side is bounded and the 

sum of the two terms is finite. Yhrthermore. Lemma 2.4 allows us to integrate 
by parts to handle the first term on the right hand side: 

ff~ I~JlnJ(x' f) <_ ullflloo ~ I~Jln-llv~J IID fln-l" 

The first part of Lemma 2.5 shows that the right hand side is no more than 

(2.6) n,,f,,~(/g(,cpj,'~,Df,n)+/f h e , V ~ j , ) + C ) .  

Since we assumed f to be bounded, we may (by scaling f )  assume that n Ilfl I~ -< 
1/2. Then the term containing the integral of g in (2.6) can be moved to the left 

hand side of (2.5) and thus can be forgotten. 
Furthermore 

IV~jI = IV(( 1 - 0)')1 -- l( 1 - O)Vr/ -  nVOjl. 

Because the function h is increasing we conclude that 

(2.7) ~ h(,V~2j,) < / f  h(,(t - ¢)Vr/, -t- ,rIVCj,) < ~ h(,Vr], + ,VOj,). 
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Since ]Vr/] is bounded, we can apply the second part  of Lemma 2.5 to the term 

on the right hand side of inequality (2.7): 

£ h(IV, l + Iv* l) _< Vial + V £ h(lVOjD. 

By the choice of the functions Cj, the second term on the right hand side tends 

to zero. Combining this with preceding discussion results in the inequality (2.4) 

and the proof is thus complete. | 

3. P r o o f  o f  T h e o r e m  1.2 

We will modify the construction made in [12] (see also [10]) in order to give the 

desired mapping. The initial idea for constructions of this type goes back, at 

least, to [6]. In practise, what we do is to use several suitably modified versions 

of the mapping given in [12]. We have not found out a slick way to reduce our 

construction to the existing ones and thus we, for the convenience of the reader, 

give a rather detailed reasoning. 

We will use the cubic norm [ x I = maxi Ixil as our standard norm from now 

on. Using the cubic norm, the x0-centered closed cube with edge length 2r > 0 

and sides parallel to coordinate axes can be represented in the form 

O(x0, r) = {x C R'~: I x - x o l  _< ,'}. 

We then call r the radius of Q. We will denote by C constants that  depend 

only on the euclidean dimension and the Orlicz-function ¢5. Constants may have 

varying values at different times. 

We will give a mapping f :  Q2 --+ R ~, Q2 = Q(0, 2), so that  a(x, f )  < 0 a.e. 

and so that  the rest of the requirements hold; the desired mapping for Q2 is then 

obtained by employing an auxiliary reflection in a hyperplane. The case of a 

general cube reduces to this by scaling. 

First we introduce a sequence of compact sets in the unit cube Q0 = 

{x e Rn: []xl[ < 1} whose intersection is a Cantor set. 

The unit cube Q0 is first divided into 2 '~ cubes with radius 1/4, which are each 

in turn divided into a subcube with radius (1/4)/2 and a difference of two cubes 

which we refer to as an annulus. The family Q1 consists of these 2 ~ subcubes. 

The remainder of the construction is then self-similar. The subcube is divided 

into 2 '~ cubes which are each in turn divided into a subcube with radius 4 -2 /2  

and an annulus. The family Q2 consists of these 2 2~ subcubes (see Figure 1). 

Continuing this way, we get the families Qk, k = 1, 2, 3 . . . . .  for which the radius 
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of Q E Qk is r(Q)  = rk = 2 -2k-1 and the nmnber of cubes in Qk is #Qk  = 2 nk. 

It easily folldws that the resulting Cantor set is of measure zero. 

@ N  

l t l l  
Q1 Q2 

Figure 1. Families Q1 and Q2. 

Next we take a Whitney decomposition around the origin so that the resulting 

cubes cover the set Q2 \{0}:  the first series of Whitney cubes consists of the 

closures of those dyadic cubes (from now on, we call the closures also dyadic) 

1 whose union covers the annulus Q2 \ Q(0,1), and then the j t h  with radius 

series consists of 2 2n - 2 ~ cubes with radius 2 - j ,  j = 1, 2, . . . .  We make the 

previous Cantor construction in each of these cubes, using the scaling factor 2 - j .  

The construction of our mapping will be the same for each of our cubes of radius 

2-J, modulo translations. We will describe the construction for a cube of radius 

2 - j ,  centered at the origin. 

The common radius of all cubes of the kth generation of the Cantor construc- 

tion is rjk = 2 - J - 2 k - l ~  and there are 2 nk = # Q j k  of them. We consider positive 

real numbers ejk such that 

o o  

E £jk = Cj ~ (:X~, 
k=l 

where cj and the ejks will be determined later. 

Define f j ,o(x)  = x, and for every k = 1, 2 . . . .  set 

2 _ J _ k _ l (  + 2 r jk - r  . ~ k-1  
99Jk(r) = 2 - j - k - 1  r k rjk ~3 k ]  I-Ii=l (1 4- ¢di), rja < r < 2rjk 

- -  1]i=1(1 + eji),  0 < r < r jk  rjk 

and 

fj'k-l(x)' 
x-z(Q) ~jk(I x-z(Q)l ), f j k ( x )  = ] j , k - l ( z ( Q ) )  + I=-=(Q)I 

x ~ UQeQk 2Q, 

x e 2 Q ,  Q E Q k .  
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Here z(Q) is the center of the cube Q. 

Now, since the series }--]k ejk converges, the infinite product of the terms 1 + ejk 

converges as well: 
oo 

h:=j 

k oo Thus the sequence (fj)k=t converges uniformly to a limit mapping fj. Notice 

that fj fixes the boundary of our cube centered at the origin. 

f l  

Figure 2. The mapping f l  acting on 2Q, Q c Q1. 

We do this for all j and produce the mapping f as described above. Now, f 

is absolutely continuous oi1 almost all lines parallel to the coordinate axes, and 

J(x, f )  < 0 for ahnost every x C Q2. In addition, f is continuous, since every 

fj is a uniform limit of continuous mappings and the fjs keep boundaries fixed. 

We have to show that 

(i) fh" IDfl < oo for all compact It" C Q2 \{0} ,  

(ii) fo2 exp(~(tt")) < oc, 

(iii) J(.,f) E L~oc(Q2 \{0}) ,  but 

(iv) .](., f) ¢ L~oAQ2), and 
(v) f is bounded. 

Fix one of the cubes Qj in the j th  series of the Whitney decomposition. Fur- 

thermore, fix one of the cubes in the kth generation of the Cantor construction 

inside Qj. The mapping f is radial in the annulus int(2Q \ Q), with respect to 

the cubic metric; 
X 

f(,9-- iT~.ii:~k(llxll). 
Recall (cf. [8]) that for f(x) = ~(Ixl), with ~2 radial, 

Df( .r) -  ~ + 1":1 : Ixl = '  

where x @ x is the n × n matrix whose i, j -entry equals :t:ixj, and 

(~-9(1371) ~ n-1  
d(x,f) = ~o'([a'[) \ ~ T F  ] 
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Thus we obtain the estimates 

(3.1) IDf(z)I ~ max{ :jk(llxll) I:~k(llxll)l} 
Ilxll ' 

and 

(3.2) J(x, f )  ~ :~k(llxll):~[l(llxll) 
Ilxll ~ - 1  

for almost every x E 2Q \ Q. Here ~ means that  the right hand side is bounded 

by the left hand side from above and below, with constants not depending on the 

indices j and k. Furthermore 

K(x)  IOf (x )p  < C. :jk(llxll) Ilxlll~k(llxll)[) ~-1 
- I J ( x , f ) l  Ilxlll:~k(llxll)l + c (  ~jk(llxll) 

n--1 (3.3) <C(ey~ + ejk )" 

Let us first show (i). It  suffices to show that  for all fixed J0, the modulus of 

the differential is integrable over the union Ajo of all Whitney cubes up to joth 

series. By equation (3.1), 

lDf(x)l < c:Jk(llxll) 
llxll + Cl:~k(llxll)l 

k--1 k 
<c2-J-k-l( lq-~SJk _}tSJk] 1 - I ( 1  +~¢~)  < C 2 k + ' I I ( 1  + ~j~ ) 

YJk rjk/ i=1 i=1 

for almost every x E 2Q \ Q for Q of radius 2 -j-2k-1. Now, since the integral 

of the modulus of the differential is same in every cube Qj in the j t h  Whitney 

series, we have 

oo /A jo Z2nk IDf(x)] = ~--~ (2 2n - 2 n) IDf(x)l = ~--~(2 2n - 2 n) • IDf(x)l 
Jo j=l J j=l k=l  jk 

Jo E 2-Jn+(1-n)k k 

j = l  k= l  i=1 

jo o~ 

<_C E c(j)2-Jn E 2(1-")k < oo, 
j = l  k=1 

since n > 1. Thus (i) holds, as long as numbers f-jk are defined as promised 

before. 
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By equations (3.2) and (3.3) we have 

OO (X3 

(3.5) fQ exp(~(A'(x))) _< CEE2- ' z J -nkexp (g2(C(e -~}  + Qnk-1))), 
2 j = l  k = l  

and 

k - 1  k 

IJ(*, 1)1 -< c2nk( 1 + ejk)n-'ej~: I I  (1 + eji) n <- 2nkejk I I (  1 + eji) n, 
i=1  i=1  

k - 1  

IJ(x, f)l > C2nkeOk II(1 + ~j~)n. 
i = l  

Integrating, as in equation (3.4), over the set Ajo, we arrive at. 

to oo jo (x~ k 

Jo j = l  k = l  JQk j = l  k = l  i=1 

Jo 

_< C E 2 - J ' c ( J )  E ejt, < ec. 
j = l  k = l  

Hence the Jacobian is locally integrable outside the origin and (iii) holds. Now, 

oc (x~ k - 1  

(3.6)  ~ IJ(a:,f)l>_C~-~2-Jn~'~eOk I - I ( l + e j j  ,~. 
2 j = l  k=5 i=1 

On the other hand, for every Whitney cube Q in the j : th  series the following 
holds: 

ec k 

(3.7) I f ( * ) l - - I~ f ~ k ( * ) I _<  l + E 2 - / - k - ' l - [ ( l + ~ j i )  f o r e v e r y x E Q .  
k = l  i=1  

By equation (3.3) there exists an L > 0 such that K(x) <_ L/eik for every x E Q2 
as long as ejk _< C' for all j, k E N and some fixed C' > 0. Now choose a sequence 
(gk) by setting 

L 
gk - ~ _ l ( k ) .  

By the change of variables s = ~ - l ( t )  in assumption (1.3), we have 

f ~ dt 
~_l(t--- 5 < o~. 

O 0  Thus the sum }-'~k=l gk, as well as the corresponding product converge. 
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Next we choose for every j 6 N an index k(j) so large that 

2-kexp(~(L(2 - j  + 2J(n-1)))) <_ 1. 

Now we are ready to define the numbers ejk. We set 

2J, k = k(j), 
£jk = 1, k = k(j) + 1, 

(k, otherwise. 

Now, as the ~jk S a r e  equal to gks except that there is a "blow-up" term for each 

j ,  the sums ~-:~k~__l ejk as well as the corresponding product converge for each j .  

Combining the previous choices for ~jk S with estimate (3.5), we have 

oo oo 

L exp(~(K(x))) <_ CEE2-nJ-nkexp(g2(C' (Cf~  n--1 + % ))) 
2 j = l  k = l  

<_CF_2-nJZ2- kexp(())  + E2-"JC(I+exp( (C/// 
j = l  k=l j = l  

(3o (3o oo 

_<C + C E 2-nj E 2-nkexp(k) = C' + E 2-nJ E (2-n e)k < OC. 
j = l  k = l  j----1 k=l 

Thus (ii) holds. Furthermore, estimate (3.6) yields 

oo oo k - 1  co 

/Q lJ(x,f)[ > C E 2-jn E £jk H (1 + ~ji) n > C E 2-Jn(2Jn) = oo, 
2 j - = l  k = l  i = 1  j = l  

which proves (iv). Finally, using (3.7), we obtain 

oo k oo 

If(x)l =l;~noo fjk(x)l <_1 + E 2 - J - k - '  H (1 + ej,)_<1 +C' E 2  -k 
k--=l i = 1  k = l  

for every x E Q, Q being any of the Whitney cubes with radius 2 - j .  Here the 

constant C' does not depend on j ,  and hence (v) is verified. This finishes the 

proof. | 
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